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physical meaning of its own, this indicates that gc
{2) 

may not be considered the correct distribution function 
and that improvements upon the chain-diagram ap­
proximation are necessary. 

This is indeed achieved by taking the tick-tack-toe 
diagrams into consideration as we have done in the 
previoussection.lt is not hard to obtain the tick-tack-toe 
diagram contribution to the ground-state energy. We 
end up with 

£ f 4 E A 4 / 2 ^ . (8.20) 

This is exactly what we needed to add to EG of Eq. (8.1) 
to remove the divergence. Thus, if we use the correct 
distribution function we get 

E = 4iratf- i £ {Po2+p2-p(p2+2PQ
2y/2-~P,\/2p2} 

= 4TanN{l+(m/l5T1/2)(a*n)1/2}, (8.21) 

which is the result first obtained by Lee and Yang by 
the binary-kernel method. 

It is remarked that the divergence in the ground-state 
energy is due to the appearance of a term proportional 

THE existence of multiple-quantum transitions in 
optically pumped lasers and splitting of the laser 

line due to the modulation of the wave function at an 
angular frequency determined by the rate of pumping 
was shown theoretically by the author in "Quantum 
Mechanical Effects in Stimulated Optical Emission,"1'2 

hereinafter called "QMESOE I." 
The theory set forth in that article showed that the 

splitting would become manifest at threshold when 
there are a large number of transitions occurring be­
tween the pump band and metastable level along with 
a high pump rate. Since the splitting is dependent upon 

* Present address: Physics Department, University of British 
Columbia, Vancouver, British Columbia, Canada. 

l R . C. Williams, Phys. Rev. 126, 1011 (1962). 
2 R. C. Williams, Appl. Opt. Suppl. 1, 63 (1962), reprinted from 

Phys. Rev. 126, 1011 (1962). 

to 1/r at short distances. Thus, the correct pair dis­
tribution function should not contain 1/r, in conformity 
with our result. 

Summarizing, we may describe the situation as 
follows: the operator (d/dr)r in the pseudopotential 
requires taking diagrams other than chain diagrams 
into consideration. 

The above observation justifies our result at least for 
both small and large distances. The behavior of g(2)(r) 
for the intermediate range requires a numerical evalua­
tion. However, it is interesting to observe that g(2)(r) is 
less than n2 at large .distances. Thus, in a certain inter­
mediate range the g(2)(V) curve might possibly come 
out above the n2 line. 

Note added in proof. The authors thank Professor 
Garcia-Colin for informing them of the following im­
portant articles: L. Colin and J. Peretti, Compt. Rend. 
248,1625 (1959); J. Math. Phys. 1, 97 (1960); L. Colin, 
ibid. 1, 87 (1960). The discussions of these articles will 
be given in a later article. 

the pump rate, it increases directly with the magnitude 
of the electric intensity of the pump field. In addition to 
this, it was also shown that at high pump powers most 
of the emitted power would be due to two-photon 
transitions. 

It was not shown in that article if such splittings and 
multiple photon transitions would occur if both the 
source and the pump were broad bands instead of being 
monochromatic lines. Since the source in QMESOE I 
was chosen to be a coherent monochromatic source, it is 
not evident that incoherent broad-band sources pump­
ing broad-pump bands will produce the same effect as 
coherent monochromatic sources pumping narrow-
pump bands. 

This question will be examined in this paper and it 
will be shown that indeed certain classes of incoherent 
broad-band sources pumping broad-pump bands do 
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line due to the modulation of the wave function at an angular frequency determined by the rate of pumping, 
is demonstrated for a certain class of incoherent broad-band sources pumping large pump bands in crystals. 
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produce splittings and multiple photon transitions. 
Section I is concerned with denning the nature of the 

incoherent broad-band source. Section I I constructs the 
Hamiltonian for the problem, and the analysis is per­
formed using the time-dependent perturbation theory. 

The effect of an incoherent broad-band-source pump­
ing a broad pump band is considered in Sec. I I I . 

SECTION I 

The approach adopted here is that because of the 
inherent complex nature of the problem under investi­
gation, the most convenient representation of an in­
coherent broad-band source will be selected. The first 
question that arises is whether the photon field of the 
source should be represented classically or quantum 
mechanically. 

Glauber3-5 has discussed the coherence and inco­
herence of radiation fields in a series of articles. He has 
shown in Ref. 5 that incoherent fields can be repre­
sented by superposing the outputs of many stationary 
sources. This enables him to deduce the distribution of 
quanta in a particular mode. The use of density 
operators enables him to provide a detailed discussion 
on the correlation and coherence properties of the 
photon field. These points are certainly important, but 
at present a simple classical description of the source 
photon field will be adopted because of the complexity 
of the problem. 

Consider the following definition of an incoherent 
radiation field. Suppose that a source consists of a 
number of atoms that are rapidly moving, each atom 
randomly emitting a sequence of photons of various 
random energies during a time interval which has no 
correlation with the emitting time interval of any other 
atom. This would constitute the most general type of 
incoherent broad-band source, but one that is ex­
tremely difficult to describe analytically. 

One can arrive at an incoherent broad-band source 
that can be easily described analytically by first placing 
all of the atoms, or elements of the source, at rest. One 
then has an assemblage of stationary sources distributed 
over an extended volume. The next restriction im­
posed is on the emission of the various wave fields. 
Each element of the source is supposed to emit a wave 
field with a particular frequency and arbitrary phase 
continuously. The phases of the waves are supposed to 
be completely uncorrected with each other, and the 
distribution of the source elements emitting wave 
fields at the various frequencies is supposed to be 
random. If the distribution of frequencies is broad and 
continuous due to the large number of source elements, 
one has constructed an incoherent broad-band source, 
but a source which can be represented easily. 

Let the electric-field intensity of a wave of frequency 

3 Roy J. Glauber, Phys. Rev. Letters 10, 3, 84 (1963). 
4 Roy J. Glauber, Phys. Rev. 130, 2529 (1963). 
8 Roy J, Glauber, Phys. Rev. 131, 2766 (1963). 

a)' emitted by the rth source element be 

fi/„'r=E,«^i["'*-*'(<#/)1, (1) 

where E'a>r is the amplitude and 0r(co') the phase. The 
resultant electric intensity of frequency a/ at any point 
P away from the source is 

N 

O a' — 2.J O w'r, (2 ) 
r=l 

where there are N source elements. Since there are 
many waves emitted of various frequencies a/, one 
must sum over all a/ to find the total resultant electric 
intensity. 

SCO - 0 0 N 

8' = / %'«&*' = / £ EVr*'["'*-*'(w,)1, (3) 
•̂  0 J 0 ==1 

which is of the form 

/•CO 

£' = / A(a / )e*»W, (4) 
Jo 

with 

A(o/) = E E'„,r*-*M»'>. (5) 

Equation (4) is the vector form of the component equa­
tion given by Born and Wolf,6 which is a Fourier-
integral representation of a polychromatic wave. How­
ever, Eq. (5) generalizes the definition to an extended, 
incoherent, broad-band source. 

This source will be completely incoherent if it is 
assumed that the light waves from these various source 
elements are completely independent and that their 
mean value is zero. If Trs is the time average of the 
product of the intensities from two different source 
elements r and s, then the requirement for complete 
incoherence is 

1 rs~\<&(ar ' &cos /av= = :v). ( 6 ) 

This is the condition that is in force throughout this 
discussion. 

SECTION II 

Consider any three-level system with a ground state, 
labeled (1), a metastable level (2), and a broad pump 
band (3). Level (1) and band (3) are connected by an 
incoherent radiation field from an incoherent broad­
band source, in particular of the type discussed in Sec. I. 
The pump band and the metastable level can be con­
sidered to be connected by another incoherent radiation 
field, or by nonradiationless transitions such as the 
phonon transitions that exist in ionic crystals doped 

6 M. Born and E. Wolf, Principles of Optics (Pergamon Press, 
Ltd., London, 1959), Chap. 10, Sec. 10.2. 
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by transition-metal elements or by rare earths. We shall 
represent these transitions phenomenologically, i.e., 
assign a matrix element to these nonradiationless transi­
tions and measure it by measuring the splitting, since 
the splitting depends upon it directly. This was shown 
in QMESOE I. The metastable level is connected to the 
ground state by stimulated emission. The total Hamil-
tonian for the system H is then 

H=H0+Hep+H'. (7) 

Ho is the unperturbed Hamiltonian, Hep is the electron-
phonon interaction that gives rise to the nonradiation­
less transitions between the pump band and metastable 
level, Hr is the perturbation due to the two wave fields, 
the incoherent field from the source and the coherent 
field from the laser transitions. 

If \l/ky k= 1, 2, 3 are the stationary states belonging, 
respectively, to levels (1), (2) and band (3), then the 
wave function for the atom, after it has gone through 
some relaxation process, is 

3 r (*-*o)"l 
^ = Z &k(t—to) exp — iEk Uk. (8) 

/b=l L ft J 

The time-dependent equations for the state amplitudes 
are 

e 
jMi= E0-ii^2e i (w~W2lU 

• 2 i 

- — ( E E '^r -v iaer^rC-^ja^iC- '—.i )« , 9(a) 
lj r - l 

jM2=— E0* • yi2*aie- i ( w~W 2 l ) l 

V 
+(l\H.t\2>)a*K»"-»«>\ 9(b) 

e N 

2j r - i 
+(2\Hep\3)*a2e-^"-"^t. 9(c) 

These equations have been written out to show that 
the laser wave field is coherent and monochromatic, 
while the incoherence of the source is clearly displayed. 
I t can be seen now that if the incoherent source was 
allowed to have its various source elements emit during 
various uncorrected time intervals, the problem would 
be almost intractable. The fact that each stationary 
element of the source is continuously emitting a wave 
of a particular frequency and phase renders the problem 
tractable. One can now solve these equations in exactly 
the same manner that it was in QMESOE I. 
Let 

ffi2=eEo*t*i2/2ft, (10) 

y i s = - L E V r - V i a 6 r i * r ( . ' ) , ( U ) 
2flr=l 

S28=<2|ff f l p |3>. (12) 

These equations then go over to those obtained in 
QMESO I, except that since the solutions of (9) yield 

the transition probabilities |a/*|2, these transition 
probabilities contain the squares of the transition rates 
| x121

2, 13>i312, and |z23|2. The item that makes the 
broad-band source analysis different from a mono­
chromatic source is the evaluation of 

|?18|V = — 1 £ E V r - V l t f T * ' ^ ! 2 . (13) 

Since the E'a>r are complex terms all unequal, this 
problem can be solved using the theory of random walk. 
The essential results were first obtained by Lord 
Rayleigh,7 while Chandrasekhar8 and Kennard9 both 
provide extremely thorough treatments. 

Their results show that, if N is large enough to 
provide a good statistical sample, then 

| E E V r - V l 8 ^ ^ ( - ' > | 2 = ^<(EV-Vl8)2>av. 

Therefore 
|yis| V = WW)N((E'U.-»U)*)„. (14) 

The pump rate at a particular frequency a/ is given by 

|^18|«' = 4 W 1 / 2 K ( E , « " V » ) V ] 1 / 2 , (15) 
2n 

and a high pump rate at a given frequency a/ can be 
obtained by providing a source with a large number N 
of individual elements that are emitting wave fields at 
that frequency. 

This is accomplished in practice by using extended 
sources and providing a suitable optical system to focus 
their radiation. 

I t was shown in QMESOE I that at high pump rates 
the two-photon process was several orders of magnitude 
greater than the one-photon process. Therefore, the one-
photon process will not be considered. The one-photon 
process was the emission of a photon by an electron 
undergoing a transition between level (2) and the 
ground state, level (1). The two-photon process in that 
article, also called multiple photon transitions, con­
sisted of photon emission by an electron undergoing a 
transition between level (2) and (1), followed by photon 
absorption from the coherent radiation field of the 
source, forcing the electron to make a transition between 
levels (1) and (3). 

The two-photon process in this article consists of 
photon emission by an electron undergoing a transition 
between levels (2) and (1), followed by photon absorp­
tion from the incoherent radiation field of the incoherent 
broad-band source, forcing the electron to make a 
transition between the ground state [level (1)] and 
the pump band. 

7 Lord Rayleigh, Scientific Papers (Cambridge University Press, 
London, 1899, 1903), Vol. I, p. 491 and Vol. IV, p. 370. 

8 S . Chandrasekhar, Rev.Mod. Phys. 15, 1 (1943). Reprinted 
in Selected Papers on Noise and Stochastic Processes (Dover 
Publications, Inc., New York, 1954). 

9 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book 
Company, Inc., New York, 1938). 
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The solution of the system of Eqs. (9) subject to the r is the mean collision time and is defined as follows: 
restriction |yi8|3>|ffi2| and | s231 ;2> | #121 enables one r=T2= 1/TAV2 

to obtain the state amplitudes #/&. a23 indicates the 
probability amplitude for state (3) with the initial ^ e r e A"2 l s t h e n a t u r a l Imewidth of metastable level 
condition a2= 1, ai=a8==0. The transition probabilities (2) f o r spontaneous emission, or, the Imewidth of one 
a r e of the cavity Fabry-Perot modes, whichever is the 

smaller. 
pjk~ |tf/fc|2. Most optical masers, both solid (ionic crystals) and 

^ ^ ... , , ,, ,... ., , gaseous, contain many Fabry-Perot modes within the 
The net power emitted under the conditions that a , / r .,,, , *\, -\ ^ , , , n ( U , , , . , 

, . f . . , , , , , /oN , / 1 V natural Imewidth of the metastable level,10~13 which 
population inversion exists between levels (2) and (1) is i t s ^ o b s e r v a t i o n of b e a t s b e t w e m ; h e v a r i o u s 

obtained by multiplying the Pit by m o d e g N a t u r a l l i n e w i d t h ^ ^ tQ ^ ^ ^ 
linewidth due to all the various physical effects, such 
as Doppler broadening in gases and phonon broadening 

and integrating over time /o- The function f(t— to) is the in solids. 
fraction of atoms which have experienced a collision at The integration over t0 yields the following result for 
time ô and exist for a time interval (t—t0) before the power emitted due to two-photon transitions 
suffering a second collision in a time dto. The parameter between states (2) and (3) as a function of a/, a/', and o>: 

fit-to)** (l/r)dt0 e x p [ - (t-t0)/rl 

/>„(« ' ,»»= (tf j-tf i ) 
hv hi*\*n\2\yn\* ir»|*12|2|;y13|2 

T 2 I T V [ 1 + ( K " ' - « 3 I ) - ( W - « „ ) + 7 . ' ) V ] 7* - ' [ l+ ( i (« ' - « . i ) - ( « - « , 0 - 7 » ' M ] 
k3 |z23 |2[l+(«'-a>21)/27w02 |r3 |z23 |2[l-(W ' -a>31)/2Tw02 

Cl+(a )"-cJ32-|K-w31)+T<o')2r2] [ 1 + ( « " - O > 3 2 - A ( " ' - « > 3 I ) - 7 * / ) 2 T 2 

k12|2|>-i3|2r r l + 27.-V 1 

7 2 <o 'CG(w ' -w 3 i ) - ( « - a > 2 1 ) ) 2 - 7 V ] L . i + 4 7 2 » < r 2 2Cl + ( « " — « , 2 — J ( « ' — » , i ) — y - ' ) V ] 

1 1 T | 0 2 3 | 2 [ 1 - ( C / - C O 3 1 ) 2 / 4 7 V ] "1 r|Z23| L l — ( w — " 

V " l J r(co"-co3 2- | (co~c 2 [ l + ( c o " - c o 3 2 - i ( a / - a > 3 i ) + 7 < o ' ) V ! ] J [ ( c o " - c o 3 2 — | ( a » ' - a , 3 1 ) ) 2 ~ 7 2 ^ ] 

r l + 2 7 2 ^ r 2 1 1 

. l + 4 7 V r 2 2 [ l + ( c o / / ~ c o 3 2 » i ( ^ " c o 3 1 ) ~ 7 w 0 2 r 2 ] 2 [ l + ( ^ - c o 3 2 - i ( ^ - c o 3 i ) + T w 0 2 r 2 ] J 

T|»12|bl3 | |228|[ l+(W ; —C08l)/27„/] (a/7 — co32— (cor — co3i)+a)—co2i)r 

Tco'[i(w /""W3l)— (CO —C02l) + 7a50CC°//~C032 — H ^ ' - W3l) + 7a>0L2[l + (a/ /--a>32 — (a)' —W3l)+W —C02l)V
2] 

[Ka) ' —W3i)~(a)~-co2i)+7co /]r ( a / ' — co32—Ka>/ — a>3i)+7co')f 

2 [ l + ( K ^ - c o 3 1 ) - ( ^ ~ c o 2 1 ) + 7 c o 0 2 r 2 ] 2 [ l + ( a ) / / - c o 3 2 - | ( c o / - c o 3 1 ) + 7 w 0 2 r 2 ] J 

T | #l2||;yi3||223 I [ 1 — (w' —<03l)/27w '] 

7co'CKw/"C°3l)— (W — W2i) + 7w '][c0 / /~-C032—|(w/ — W 3 l )~ 7 a/J 

(a / ' — W 3 2-~ (a/—C03i)+w~co2i— 27 w / ) r 

. 2 [ l + (a / ' — co32—(a/ — co3i)+co—co2i— 27w / ) 2 r 2 ] 

[K^—wsi)— («—«2i)+Y«']r [ a / ' — 0)32— §(a / — co3i)-~ 7 o ' ] r 

2 [ l + ( i ( ^ - c o 3 i ) - ( c o - - c o 2 1 ) + 7 . 0 2 T 2 ] 2 [ l + ( c o / / - W 3 2 - K c o / - ~ c o 3 i ) ~ 7 . 0 2 r 2 ] J 

T I *12|bl3||2!28 | [ 1 + (« ' — W 3 I ) / 2 Y „ ' ] (a)" —co32— (a/ — o)3i)+co—a)2i+27w^)r 

7 a / [ 2 ( y —W3l)— (w — C02l) — 7 ^ 0 [ w / / ~ W 3 2 ~ | ( c 0 / ~ a ) 3 l ) + 7 c o 0 L 2 [ l + (w//™CO32— (w7 —W3l)+W —W 2 l^ 

[Kco' —a)3i)~(co—co2i) —7 w / ] r (a / ' — co 3 2 —J( w '—w 8 i )+7« ' )^ 

2 [ l + G ( c / ~ c o 3 i ) " ( c o - c 2 1 ) - 7 w 0 2 r 2 ] 2 [ l + ( co / / - co32" - | ( a ) , - co 3 i )+7^ ) 2 r 2 ] -

r |^ i 2 | | y i3 | | z28 |Cl- - (w / —w 3 i ) /27 w / ] 

— 27 w / [ | (co' —co 31)— (w — co2i) — Y « ' X W " ~ co32—-!(w/ —w3i) — 7 « ' J 

[ J ( o / —co3 i)~ (co — co2i) — 7a>']'r 

+ 

[co77 —CO32— (a/ — co3i)+co — co2i]r 

. [ l + (a)// — co32— (co'—«3i)+w —W2i)2r2] 

[ a / ' — CU32 — §(co' — CO31) — 7 « ' ] r 

[ l + C 4 ( « ' - « 8 i ) ~ ( c o ~ c o 2 1 ) - 7 . 0 2 r 2 ] [ l + ( c o " - c o 8 2 - i V - c o 3 i ) - 7 . 0 2 r 2 ] -
(16) 

10 D. R. Herriot, J. Opt. Soc. Am. 52, 31 (1962). 
11 A. Javan, W. R. Bennett, Jr., and D. R. Herriott, Phys. Rev. Letters 6, 106 (1961). 
12 B. J. McMurty and A. E. Siegman, Appl. Opt. 1, 51 (1962). 
13 W. Heinlein and D. Roess, Proc. IEEE 51, 1667 (1963). 
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7W' = l{(" ' -<03i) 2+4[ |y 1 3 |H- |z23 | 2 ]} I / 2 

and when a/ = cosi, 
7<o-( |^13|2+N23|2)1 / 2 = 7 , 

the splitting factor of QMESOE I. As an example, if | ^ i 3 | < |z23 | in ruby,1 yr^ \z2z\ = 2Xl07 /sec. 

(17) 

(18) 

SECTION III 

Throughout this section it is assumed that transitions 
between the pump band and the metastable level occur 
via single-phonon emission of frequency o>23, hence 
w//==a)23; and Pn now becomes a function of a/ and to. 

Let the width of the pump band between the extremes 
of the band be AccB, the extremes being the point where 
the absorption band drops to 10% of its maximum. 
Define a relaxation time 

J T 3 = 2TT/A(J0B , 

then the structure factor for the pump band can be 
represented as Sp([co' —coi3]7V), where Sp is the function 
that analytically describes the shape of the pump band. 

If the pump band is replaced by a large number of 
equally spaced monochromatic lines with a separation 
f, then there will be Aco#/f lines in place of the band 
with the same profile as the band. A typical pump band 
in a laser crystal has Ao>#~ 1014 cps. If f ~ 10~6, say, then 
the number of lines replacing the band is Aco^/f ̂  1020. 
Later on in the analysis, the limit will be taken when 
f —> e, e being an infinitesimal different from zero. In 
that limit all the lines merge into a band. The structure 
factor for the band can thus be written as 

AT/2 

SP(<*')= E S p [ ( c / - c o 1 3 ) r 3 ] 5 ( c / - u 1 3 - n f ) , (19) 
.n=-Af/2 

where M= Awu/f and w=0, ± 1 , ± 2 , • • • ±M/2. Con­
sider next the power emitted by a two-photon transition 
P2z(oof,oo) due to an exciting pump frequency a/. Let 
the shape factor for the broad-band source be S8(o>'). 

The shape factors are defined here to mean the 
probabilities of emitting or absorbing a photon for 
source or pump band, respectively. Another way of 
viewing them is to regard them as the statistical weights 
attached to photon emission or absorption. 

These weights are real functions of a/. The shape 
factor for the pump band is given by its absorption 
spectrum. Similarly, the shape factor for the source is 
given by its emission spectrum. Since the spectra are 
obtained by measuring averaged transition rates, the 
case considered here is identical with that considered 
in Sec. II , i.e., these functions are dependent only on 
a/, not on the phases of the source. The average transi­
tion rates for the source are evaluated in the same 
manner as Eq. (13), i.e., by random walk, hence the 
phases average out. The case where they do not average 
out is extremely difficult, and would apply to extremely 
low-intensity sources of infinitesimal spatial extension. 
This case is concerned with high-intensity sources of 
large spatial extension. 

An integration of P23(w',co) over both bands yields 

P23(co> P2z(o>',a))Sp(a>')Ss(co')da>', (20) 

choosing the broadest source possible, i.e., 

S . ( w ' ) = l , 0 < a / < o o ; (21) 

and substituting (19) and (21) into (20) yields 

+M/2 

P23(co)= L Piz(o>n+nMSp(ntT*). (22) 
n—Jlf/2 

The integral converts to a sum because of the delta 
function 5 (a/—wis—»f). 

Instead of examining the sum (22) for all of the terms 
in (16), it shall be done for the two leading terms. The 
analysis can be readily extended to the remaining terms 
with the same results (see Appendix). 

We will express these terms in P2z(oof,co) as a function 
of a/ and a>, all other matrix elements being lumped 
into one constant. Thus, the leading terms can be 
written as 

/W1 («',«)=: 
^ 2 3 ± 

[ (cy-o> 1 3 ) 2 -H7 2 ] [ i+( | [u '^ 

Substituting (23) into (22) yields 

+*7* A2z
±Sp(n{Tz) 

n ^ / 2 [ ^ + 4 7 2 ] { l + [ c o ~ ( o 1 2 ± H ^ 2 + 4 7 2 ) 1 / 2 ~ K ] V } 

(23) 

(24) 

In the limit when f —> e, some infinitesimal different 
from zero, Eq. (24) holds for a band, i.e., a large number 
of densely packed lines. 

If 7 r > l , then when n=0 the result is the split 
two-photon power emission spectrum obtained in 
QMESOE I. For small f, the n=0 term provides an 
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adequate description of all terms up to n^y/10. Thus, 
those pump frequencies which fall in the range 

coi3- ( Y / 1 0 ) < O / < C O I 3 + ( T / 1 0 ) 

act like a monochromatic source of frequency con. 
When n£^>y, i.e., n£^10y, the term [Vf2+4723 in 

the denominator attenuates these large n terms by 
factors of 102 and greater. Thus, one needs only to 
consider the range 

con— 1 0 Y < O / < C O I 3 + IO7, 

since this is the only region of the pump band that con­
tributes. The effective band width of the pump band is 
even narrower since we can select only that range which 
contributes to the main part of the observed power. 
The power will be down by a factor of 2 when n£ = 27. 
Hence, the effective band width of the pump band 
Ao>2^=47. Since 7 contains (14), the larger the spatial 
extension of the source, i.e., the higher the N, the 
larger the 7. 

Since the pump bandwidth is of the order of 1014 

cycles, and the splitting factor 7 is of the order 107, the 
shape factor Sp(n^r) is a constant for con~ 107<co'<coi3 

+ IO7 given by the value it has at its maximum, Sp(con)-
I t should be noted that if 

/ . 

+00 +M/2 

Sp(ca')dw'=l, then £ £ P [ > ? T ] = 1 . 
n=-MI2 

Thus, one can state the following very general con­
clusions about pumping conditions in laser crystals: 

Incoherent broad-band sources of the type discussed in 
Sec. I, pumping broad pump bands act like narrow-line 
sources pumping narrow lines. The effective linewidth of 
both source and band is AOOBE^^J- This result is a con­
sequence of the quantum-mechanical splitting factor 
7o/, which appears in the denominators of P2z(co',co). 
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APPENDIX 

Let the various terms of P2z(oof,co",oo) in (16) be 
denoted by 7\-, i— 1, 2, 3, • • •. Consider the third and 
fourth terms. Setting to" = 0032, it is seen that r3 ) 4 is 

independent of 00 and does not affect the line shape, 
only the power level. Term 6 is also independent of 00 
and does not affect the line shape. 

Term 5 has three terms inside the square brackets 
that are independent of «, while the factors multiplying 
the bracket have the form given by (23), hence, term 
5 exhibits the same type of behavior as the leading terms. 

The remaining four terms have the following behavior. 
At a particular set of resonant frequencies, o/ = wi3, 
w"=a>32, oo=co12+y, the sum of these four terms is of the 
order of magnitude 

10 

E Ti=0\ 
i=7 

I ^12Jbl8||z28 I T4 " 

. ( l+W7 2 r 2 ) ( l+7 2 r 2 ) . 

where m is a positive integer greater than unity. 
To facilitate the evaluation, let |3>i3| = I223I, then 
7 2 =2|s 2 3 | 2 . If we assume a r so that 7 7 ^ 10, say, then 

t=7 L W7V J L4w|223|2J 

The leading terms, at the same set of resonances, are 
of the order of 

L = o|V l^isPlyisI2' 
= 0[ ir s |* 1 2 |*] . 

Hence, 

L/i:Ti=0[,m(T'\zn\i)(T\xli\)2, 
i=7 

if r is chosen so that 

Then 
10 

L/Z 7 X 9 O 1 0 2 ] , 

or the last four terms are negligible in comparison to the 
leading terms and do not affect the line shape or power 
level. Even so, if one considers the last term T10, and 
in particular looks at the factors multiplying the square 
brackets, these have factors in the denominator that 
lead to rapid convergence when expressed in the form 
(22), in particular the factors 7*/ and [ K ^ ' - w s O + T o / ] ; 
recall that a/' = co32. This is also true of T7-> T9. 


